AP Physics - Work on This - 17

/45

Identifier

Per \qquad

You can tell whether a man is clever by his answers. You can tell whether a man is wise by his questions. -Mahfouz Naguib

1. A spring has a spring constant of $\mathrm{k}=55.0 \mathrm{~N} / \mathrm{m}$. The spring is compressed a distance of 3.50 cm . What is the potential energy stored in the spring?
2. An 85 g wooden block is set up against a spring. The block rests on a smooth surface. The block is pushed into the spring, compressing it a distance of 2.0 cm and then released. The spring constant is $\mathrm{k}=78 \mathrm{~N} / \mathrm{m}$. What is the speed of the block when it reaches its initial position (where the spring was not compressed)?
3. A roller coaster starts at some height at rest. It goes down a hill and then goes up a second hill, reaching the top, which is 28.5 m above the low point between hills, at a speed of 22.5 m / s. How high was the initial hill?
4. A 5.0 kg crate at rest, slides down a smooth ramp that is elevated at an angle of 38°. The length of the ramp is 2.0 m . What will be the speed of the crate at the bottom of the ramp?
5. A fireman runs up a 7.5 m ladder. The fireman has a mass of 52 kg and is carrying 15 kg of firefightin' gear. If the fireman developed 685 watts, how much time did it take to reach the top of the ladder?
6. A 3.00 kg mass, m_{l}, slides up a ramp. The angle for the ramp is 28.0°. The 3.00 kg mass is connected to a second mass, m_{2}, of 3.25 kg as shown by a light string with a frictionless pulley. Coefficient of kinetic friction is 0.285 . Find (a) the acceleration of m_{l}, (b) the kinetic energy of m_{l} after it has traveled 25.0 cm up the ramp, and (c) the work done on m_{l} to move it the 25.0 cm .

7. A 3.12 kg iron ball is suspended from the ceiling of a room by two cords as shown in the drawing. The ceiling is 2.20 m above the floor. The angle $\boldsymbol{\theta}$ is 61.0°. The other cord is perfectly horizontal. Find (a) The tension in both strings. (b) The potential energy of the ball relative to the floor. (c) If the horizontal string were to break, what would be the velocity of the ball when the other cord is vertical?

8. A 47.0 kg projectile is launched with an initial speed of $72.0 \mathrm{~m} / \mathrm{s}$ and an angle of 39.8° above the horizontal. The projectile lands on a hillside 7.15 s later. Neglect air resistance. (a) What is the projectile's kinetic energy at the highest point of its trajectory? (b) What is the height of the impact point? (c) What is its total energy just before it hits the hillside?
