AP Chemistry - Buffers, Titration, Solubility - 61

Name \qquad Per \qquad

1. Calculate the pH of a buffer that is $0.100 \mathrm{M} \mathrm{NaHCO}_{3}, \mathrm{~K}_{\mathrm{a}}=5.6 \times 10^{-11}$, and $0.125 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$.
2. Calculate the pH of a solution formed by mixing 55 mL of $0.20 \mathrm{M} \mathrm{NaHCO}_{3}$ with 65 mL of 0.15 M $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
3. How many grams of sodium lactate, $\mathrm{NaC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$ should be added to 1.00 L of 0.150 M lactic acid, $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}, \mathrm{~K}_{\mathrm{a}}=1.4 \times 10^{-4}$, to form a buffer solution with pH 2.90 ? Assume that no volume change occurs when the sodium lactate is added.
4. How many milliliters of 0.105 M HCl are needed to titrate each of the following solutions to the equivalence point:
(a) 55.0 mL of 0.0950 M NaOH
(b) 23.5 mL of 0.117 M KOH
(c) 125.0 mL of a solution that contains 1.35 g of NaOH per liter
5. Consider the titration of 30.0 mL of $0.030 \mathrm{M} \mathrm{NH}_{3(\mathrm{aq})}, \mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$, with 0.025 M HCl . (a) Calculate the pH of the NH_{3} before titration.
(b) Calculate the pH after 10.0 mL of HCl has been added.
6. The molar solubility of PbBr_{2} at $25^{\circ \mathrm{C}}$ is 1.0×10^{-2} moles/L. Calculate $\mathrm{K}_{\text {sp }}$.
7. If 0.0490 g of AgIO_{3} dissolves per liter of solution, what would be the value of K_{sp} ?
8. Calculate the solubility of LaF_{3} in g / L in pure water. The K_{sp} of $\mathrm{LaF}_{3}=2 \times 10^{-19}$.
9. Consider the reaction of ozone with nitrogen monoxide: $\mathrm{O}_{3(\mathrm{~g})}+\mathrm{NO}_{(\mathrm{g})} \rightarrow \mathrm{O}_{2(\mathrm{~g})}+\mathrm{NO}_{2(\mathrm{~g})}$. (a) Calculate the standard enthalpy change.
(b) Based on the reaction alone, make a prediction of the standard entropy change. Explain.
(c) Based on your answers from parts (a) and (b) what do you think the sign of the standard free-energy change will be? Explain.
(d) Using the information in the table below, write the rate-law for the reaction. Explain how you determined the rate-law.

Experiment	Initial $\left[\mathrm{O}_{3}\right] \mathrm{M}$	Initial [NO] M	Initial Rate M/s
1	0.0010	0.0010	0.163
2	0.0010	0.0020	0.326
3	0.0020	0.0010	0.326
4	0.0020	0.0020	0.652

(e) Here are the three steps of the proposed mechanism for the reaction:

Step 1:
$\mathrm{O}_{3}+\mathrm{NO} \rightarrow \mathrm{O}+\mathrm{NO}_{3}$
Step 2:
$\mathrm{O}+\mathrm{O}_{3} \rightarrow 2 \mathrm{O}_{2}$
Step 3: $\quad \mathrm{NO}_{3}+\mathrm{NO} \rightarrow 2 \mathrm{NO}_{2}$
Which step is the rate determining step which is consistent with the rate law from part (d)? Explain.

