AP Chemistry – Rates and Mechanisms – 56

Name_

_____Per ____

1. (a) From the following data for the first-order gas-phase isomerization of CH_3NC at $215^{\circ C}$, use a graphing calculator to determine the first-order rate constant:

Time(s)	0	2000	5000	8000	12000	15000
Pressure(torr)	502	335	180	95.5	41.7	22.4

(b) What is the half-life for the reaction?

2. (a) The activation energy for the isomerization of methyl isonitrile is 160.0 kJ/mole. Calculate the fraction of methyl isonitrile that have an energy of 160.0 kJ or greater at 500.0 K.

(b) Calculate this fraction for a temperature of 510.0 K. What is the ratio of the fraction at 510.0 K to that at 500.0 K?

3. The gas-phase reaction, $Cl_{(g)} + HBr_{(g)} \rightarrow HCl_{(g)} + Br_{2(g)}$, has an overall enthalpy change of -66 kJ. The activation energy for the reaction is 7 kJ. (a) Sketch the energy profile for the reaction and label E_a and ΔE .

(b) What is the activation energy for the reverse reaction?

4. What is the molecularity of each of the following elementary processes? Write the rate law for each. (a) $2NO_{(g)} \rightarrow N_2O_{2(g)}$

(b) $CH_2CH_2CH_{2(g)} \rightarrow CH_2CHCH_{3(g)}$

(c) SO_{3(g)} \rightarrow SO_{2(g)} + O_(g)

5. The following mechanism has been proposed for the reaction of NO with H₂ to form N₂O and H₂O: NO_(g) + NO_(g) \rightarrow N₂O_{2(g)} N₂O_{2(g)} + H_{2(g)} \rightarrow N₂O_(g) + H₂O_(g)

(a) Show that the elementary steps of the proposed mechanism add to provide a balanced chemical equation for the reaction.

(b) Write a rate law for each elementary step in the mechanism.

- (c) Identify any intermediates in the mechanism.
- (d) The observed rate law is rate = $k[NO]^2[H_2]$. If the proposed mechanism is correct, what can we conclude about the relative speeds of the first and second steps?

Experiment	[BF ₃] M	[NH ₃] M	Initial Rate (M/s)		
1	0.250	0.250	0.2130		
2 0.250		0.125	0.1065		
3	0.200	0.100	0.0682		
4	0.350	0.100	0.1193		
5	0.175	0.100	0.0596		

6. The following data were measured for the reaction $BF_{3(g)} + NH_{3(g)} \rightarrow F_{3}BNH_{3(g)}$:

(a) What is the rate law for the reaction?

- (b) What is the overall order of the reaction?
- (c) What is the value of the rate constant for the reaction?

_	1000000000000000000000000000000000000					
	Experiment	Initial [NO] M	Initial [Br ₂] M	Initial Rate of Appearance of NOBr M/s		
	1	0.0160	0.0120	3.24×10^{-4}		
	2	0.0160	0.0240	6.38x10 ⁻⁴		
	3	0.0320	0.0060	6.42x10 ⁻⁴		

7. The reaction of nitrogen monoxide and bromine gas proceeds by the following reaction: 2NO_(g) + Br_{2(g)} \rightarrow 2NOBr_(g). The data that were collected for this experiment at 25^{oC} are below:

(a) Determine the initial rate of disappearance of $Br_{2(g)}$ for experiment 1.

(b) What is the order of each of the reactants? Explain.

(c) Write the rate law.

(d) Calculate the rate law constant. Don't forget the units.

(e) A chemist writes a proposed mechanism for the reaction indicating that $Br_{2(g)} + NO_{(g)} \rightarrow NOBr_{2(g)}$ is the rate limiting step, where the second step $NOBr_{2(g)} + NO_{(g)} \rightarrow 2 NOBr_{(g)}$ is a fast process. Is this proposed mechanism supported by the experimentally derived rate law? Explain.