AP Chemistry - Rate Laws - 55

Name \qquad Per \qquad

1. A reaction $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$ obeys the rate law: Rate $=k[\mathrm{~B}]^{2}$. (a) If $[\mathrm{A}]$ is doubled, how will the rate of the chemical reaction change?
(b) What are the reaction orders for A and B individually and the reaction overall?
(c) What are the units of the rate constant?
2. Consider the following reaction: $2 \mathrm{NO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$. (a) The rate law for this reaction is first order in H_{2} and second order in NO. Write the rate law.
(b) If the rate constant for this reaction at 1000 K is $6.0 \times 10^{4} / \mathrm{M}^{2} \mathrm{~s}$, what is the reaction rate when $[\mathrm{NO}]=$ 0.050 M and $\left[\mathrm{H}_{2}\right]=0.010 \mathrm{M}$?
(c) What is the reaction rate at 1000 K when the concentration of NO is doubled, to 0.10 M , while the concentration of H_{2} remains 0.010 M ?
(d) What is the effect of doubling [NO] on the reaction rate? [Compare answers from (b) and (c).]
3. (a) For a second order reaction, what quantity, when graphed vs. time, will yield a straight line?
(b) How do the half-lives of first order and second order reactions differ?
4. The reaction $2 \mathrm{ClO}_{2(\mathrm{aq})}+2 \mathrm{OH}_{(\mathrm{aq})}^{-} \rightarrow \mathrm{ClO}_{3-(\mathrm{aq})}^{-}+\mathrm{ClO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ was studied with the following results:

Experiment	$\left[\mathrm{ClO}_{2}\right] \mathrm{M}$	$\left[\mathrm{OH}^{-}\right] \mathrm{M}$	Rate, M / s
1	0.060	0.030	0.0248
2	0.020	0.030	0.00276
3	0.020	0.090	0.00828

(a) Determine the rate law for the reaction. Explain your reasoning.
(b) Calculate the rate constant.
(c) Calculate the rate when $\left[\mathrm{ClO}_{2}\right]=0.010 \mathrm{M}$ and $\left[\mathrm{OH}^{-}\right]=0.015 \mathrm{M}$.
5. The first order rate constant for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$, at $70^{\circ \mathrm{C}}$ is $6.82 \times 10^{-3} / \mathrm{s}$. Suppose we start with 0.0250 moles of $\mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})}$ in a volume of 2.0 L . (a) How many moles of $\mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})}$ will remain after 2.5 minutes?
(b) How many minutes will it take for the quantity of $\mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})}$ to drop to 0.010 moles?
(c) What is the half-life of $\mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})}$ at $70^{\circ} \mathrm{C}$?

