AP Chemistry – Rate Laws – 55

Name
1. A reaction $A + B \rightarrow C$ obeys the rate law: Rate = $k[B]^2$. (a) If [A] is doubled, how will the rate of the chemical reaction change?
(b) What are the reaction orders for A and B individually and the reaction overall?
(c) What are the units of the rate constant?
2. Consider the following reaction: $2NO_{(g)} + 2H_{2(g)} \rightarrow N_{2(g)} + 2H_2O_{(g)}$. (a) The rate law for this reaction is first order in H_2 and second order in NO. Write the rate law.
(b) If the rate constant for this reaction at 1000 K is 6.0 x $10^4/M^2$ s, what is the reaction rate when [NO] = 0.050 M and [H ₂] = 0.010 M?
(c) What is the reaction rate at 1000 K when the concentration of NO is doubled, to 0.10 M, while the concentration of H_2 remains 0.010 M?
(d) What is the effect of doubling [NO] on the reaction rate? [Compare answers from (b) and (c).]
3. (a) For a second order reaction, what quantity, when graphed vs. time, will yield a straight line?
(b) How do the half-lives of first order and second order reactions differ?

4. The reaction $2ClO_{2(aq)} + 2OH_{(aq)}^{-} \rightarrow ClO_{3(aq)}^{-} + ClO_{2(aq)}^{-} + H_2O_{(l)}$ was studied with the following results:

Experiment	[ClO ₂] M	[OH ⁻] M	Rate, M/s
1	0.060	0.030	0.0248
2	0.020	0.030	0.00276
3	0.020	0.090	0.00828

(a) Determine the rate law for the reaction. Explain your reasoning.

- (b) Calculate the rate constant.
- (c) Calculate the rate when $[ClO_2] = 0.010 \text{ M}$ and $[OH^-] = 0.015 \text{ M}$.
- 5. The first order rate constant for the decomposition of $N_2O_{5(g)} \rightarrow 2NO_{2(g)} + O_{2(g)}$, at $70^{\circ C}$ is 6.82 x 10^{-3} /s. Suppose we start with 0.0250 moles of $N_2O_{5(g)}$ in a volume of 2.0 L. (a) How many moles of $N_2O_{5(g)}$ will remain after 2.5 minutes?

(b) How many minutes will it take for the quantity of $N_2O_{5(g)}$ to drop to 0.010 moles?

(c) What is the half-life of $N_2O_{5(g)}$ at $70^{\circ C}$?