AP Chemistry – Reaction Rates – 53

Name	Per

1. A flask is charged with 0.100 mole of A and allowed to react to form B according to the hypothetical gas-phase reaction $A_{(g)} \rightarrow B_{(g)}$. The following data are collected:

Time (s)	0	40	80	120	160
Moles of A	0.100	0.067	0.045	0.030	0.020

(a) Calculate the number of moles of B at each time in the table.

(b) Calculate the average rate of disappearance of A for each 40 s interval, in units of moles/s.

(c) What additional information would be needed to calculate the rate in units of M/s?

2. The rate of disappearance of HCl was measured for the following reaction:

 $CH_3OH_{(30)} + HCl \rightarrow CH_3Cl_{(30)} + H_2O_{(1)}$. The following data were collected:

Time (min.)	0	54.0	107.0	215.0	430.0			
[HCl] M	1.85	1.58	1.36	1.02	0.580			

Calculate the average rate of reaction, in M/s, for the time interval between each measurement.

3. Using the data provided in question 2, graph [HCl] vs. time. Use the graph to determine the instantaneous rates in M/min and M/s at t=75.0 minutes and t=250.0 minutes.

4. For each of the following gas-phase reactions, write the rate expression in terms of the appearance of each product or disappearance of each reactant:

(a)
$$2HBr_{(g)} \rightarrow H_{2(g)} + Br_{2(g)}$$

(b)
$$2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$$

(c)
$$2NO_{(g)} + 2H_{2(g)} \rightarrow N_{2(g)} + 2H_2O_{(g)}$$

5. For the compound $C_3H_8O_2$, determine the mass percentage of each element.