AP Chemistry - Acids \& Bases - 47

Name \qquad Per \qquad

1. Consider the reaction $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{F}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{HF}_{(\mathrm{g})}$. (a) Using thermochemical data, calculate $\Delta \mathrm{G}^{\circ}$ at 298 K .
(b) Calculate $\Delta \mathrm{G}$ at 298 K if the reaction mixture consists of 8.0 atm of $\mathrm{H}_{2}, 4.5 \mathrm{~atm}$ of F_{2}, and 0.36 atm of HF.
2. Write the equilibrium-constant expression and calculate the value of the equilibrium constant at 298 K for the reaction $\mathrm{NaHCO}_{3(\mathrm{~s})} \leftrightarrow \mathrm{NaOH}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$.
3. What is the difference between the Arrhenius and the Brønsted-Lowry definitions of a base?
4. When ammonia is dissolved in water, it behaves both as an Arrhenius base and as a Brønsted-Lowry base. Explain.
5. Give the conjugate acid of the following Brønsted-Lowry bases:
(a) $\mathrm{HAsO}_{4}{ }^{2-}$
(b) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
(c) $\mathrm{SO}_{4}{ }^{2-}$
(d) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
6. Write an equation for the reaction in which $\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{5}^{-}$(aq) acts as a base in $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$. Designate the acid, base, conjugate acid and base.
7. Write an equation for the reaction in which $\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{5}^{-}{ }_{(a q)}$ acts as an acid in $\mathrm{H}_{2} \mathrm{O}_{(1)}$. Designate the acid, base, conjugate acid and base.
8. Predict the products of the following acid-base reactions, and also predict whether the equilibrium lies to the left or right.
(a) $\mathrm{Cl}_{(\mathrm{aq})}^{-}+\mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+} \leftrightarrow$
(b) $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{HNO}_{2(\mathrm{aq})} \leftrightarrow$
(c) $\mathrm{NO}_{3}^{-}{ }_{(\text {aq) }}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow$
9. (a) Write a chemical equation that illustrates the autoionization of water. (b) Write the expression for the ion-product constant for water, K_{w}.
10. A solution is described as basic. What is meant by this statement?
11. The fermentation of glucose produces ethyl alcohol and carbon dioxide:
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(\mathrm{aq})} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\mathrm{aq})}+2 \mathrm{CO}_{2(\mathrm{~g})}$ (a) How many moles of carbon dioxide are produced when 0.400 moles of glucose reacts in this fashion?
(b) How many grams of glucose are needed to form 7.50 g of ethyl alcohol?
(c) How many grams of carbon dioxide form when 7.50 g of ethyl alcohol are produced?
12. When hydrogen sulfide gas is bubbled into a solution of sodium hydroxide, the reaction forms sodium sulfide and water. How many grams of sodium sulfide are formed if 2.00 g of hydrogen sulfide is bubbled into a solution containing 2.00 g of sodium hydroxide, if the sodium sulfide is produced at 92.0% yield?
13. How would you prepare 100.0 mL of $0.200 \mathrm{M} \mathrm{AgNO}_{3}$ solution starting with pure solute?
14. An experiment calls for you to use $250 . \mathrm{mL}$ of $1.00 \mathrm{M} \mathrm{HNO}_{3}$ solution. All you have available is a bottle of $6.00 \mathrm{M} \mathrm{HNO}_{3}$. How would you prepare the desired solution?
