AP Chemistry - Are we at equilibrium yet? - 46

Name \qquad Per \qquad

1. A mixture of $\mathrm{H}_{2}, \mathrm{~S}$ and $\mathrm{H}_{2} \mathrm{~S}$ is held in a 1.0 L vessel at $90^{\circ \mathrm{C}}$ until the following equilibrium is achieved: $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{S}_{(\mathrm{s})} \leftrightarrow \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}$. At equilibrium the mixture contains 0.46 g of $\mathrm{H}_{2} \mathrm{~S}$ and 0.40 g of H_{2}. (a) Write the equilibrium constant expression for this reaction.
(b) What is the value of K_{p} for the reaction at this temperature?
2. A sample of nitrosyl bromide decomposes according to the following equation:
$2 \mathrm{NOBr}_{(\mathrm{g})} \leftrightarrow 2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{Br}_{2(\mathrm{~g})}$. An equilibrium mixture is a 5.00 L vessel at $100^{\circ \mathrm{C}}$ contains 3.22 g of NOBr , 3.08 g of NO and 4.19 g of Br_{2}. (a) Calculate K_{p}.
(b) What is the total pressure exerted by the mixture of gases?
3. Solid $\mathrm{NH}_{4} \mathrm{HS}$ is introduced into an evacuated flask at $24^{\circ \mathrm{C}}$. The following reaction takes place: $\mathrm{NH}_{4} \mathrm{HS}_{(\mathrm{s})} \leftrightarrow \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}$. At equilibrium the total pressure for NH_{3} and $\mathrm{H}_{2} \mathrm{~S}$ taken together is 0.614 atm . What is the K_{p} for this equilibrium at $24^{\circ \mathrm{C}}$.
4. Nicotine is composed of carbon, hydrogen and nitrogen. A 5.250 mg sample of nicotine was combusted, producing 14.242 mg of CO_{2} and 4.083 mg of $\mathrm{H}_{2} \mathrm{O}$. (a) What is the empirical formula for nicotine?
(b) If the substance has a molar mass of $162 \mathrm{~g} / \mathrm{mole}$, what is its molecular formula?
5. Indicate the concentration of each ion present in the solution formed by mixing (assume that the volumes are additive): (a) 20 mL of 0.100 M HCl and 10.0 mL of 0.500 M HCl
(b) 15.0 mL of $0.300 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ and 10.0 mL of 0.200 M KCl
(c) 3.50 g of NaCl in 50.0 mL of $0.500 \mathrm{M} \mathrm{CaCl}_{2}$ solution
