AP Chemistry - K_{eq} and LeChâtelier's Principle - 44

Name \qquad Per \qquad

1. Methanol, $\mathrm{CH}_{3} \mathrm{OH}$, can be made by the reaction: $\mathrm{CO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \leftrightarrow \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})}$.
(a) Use thermochemical data to calculate $\Delta \mathrm{H}^{\circ}$ for this reaction.
(b) In order to maximize the equilibrium yield of methanol, would you use a high or low temperature? Explain.
(c) In order to maximize the equilibrium yield of methanol, would you use a high or low pressure? Explain.
2. At $25^{\circ \mathrm{C}}$ the reaction $\mathrm{CaCrO}_{4(\mathrm{~s})} \leftrightarrow \mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}+\mathrm{CrO}_{4}{ }^{2-}{ }_{(\text {aq })}$ has an equilibrium constant $\mathrm{K}_{\mathrm{eq}}=7.1 \times 10^{-4}$. What are the equilibrium concentrations of Ca^{2+} and $\mathrm{CrO}_{4}{ }^{2-}$ in a saturated solution of CaCrO_{4} ?
3. How is a reaction quotient used to determine whether a system is at equilibrium?
4. If $\mathrm{Q}>\mathrm{K}_{\mathrm{eq}}$, how must the reaction proceed to reach equilibrium?
5. At the start of a certain reaction, only reactants are present. What is the value of Q at this point?
6. Consider the following reaction: $\mathrm{CaSO}_{4(\mathrm{~s})} \leftrightarrow \mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}{ }^{2-}{ }_{(\mathrm{aq})}$. At $25^{\circ \mathrm{C}}$ the equilibrium constant is $\mathrm{K}_{\mathrm{eq}}=2.4 \times 10^{-5}$ for this reaction.
(a) If excess CaSO_{4} is mixed with water at $25^{\circ} \mathrm{C}$ to produce a saturated solution of CaSO_{4}, what are the equilibrium concentrations of Ca^{2+} and $\mathrm{SO}_{4}{ }^{2-}$?
(b) If the resulting solution has a volume of 3.0 L , what is the minimum mass of $\mathrm{CaSO}_{4(\mathrm{~s})}$ needed to achieve equilibrium?
7. A mixture of CH_{4} and $\mathrm{H}_{2} \mathrm{O}$ is passed over a nickel catalyst at 1000 . K . The emerging gas is collected in a 5.00 L flask and is found to contain 8.62 g of $\mathrm{CO}, 2.60 \mathrm{~g} \mathrm{of}_{\mathrm{H}}^{2}, 43.0 \mathrm{~g}$ of CH_{4}, and $48.4 \mathrm{~g} \mathrm{of}_{2} \mathrm{O}$. Assuming that equilibrium has been reached, calculate K_{eq} for the reaction.
8. The following electron configurations represent excited states. Identify the element and write its condensed ground state electron configuration.
(a) $1 s^{2} 2 s^{2} 3 p^{2} 4 p^{1}$
(b) $[A r] 3 d^{10} 4 s^{1} 4 p^{4} 5 s^{1}$
(c) $[K r] 4 d^{6} 5 s^{2} 5 p^{1}$
9. Determine the empirical formulas of the compounds with the following compositions by mass: (a) $24.5 \% \mathrm{Na}, 14.9 \% \mathrm{Si}$ and $60.6 \% \mathrm{~F}$
(b) $62.1 \% \mathrm{C}, 5.21 \% \mathrm{H}, 12.1 \% \mathrm{~N}$ and $20.7 \% \mathrm{O}$
10. Calculate the molarity of a solution made by dissolving 0.125 moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in enough water to form exactly 750 . mL of solution.
11. How many moles of KMnO_{4} are present in 125 mL of a 0.0850 M solution?
12. How many milliliters of 11.6 M HCl solution are needed to obtain 0.255 moles of HCl ?
13. Write Lewis structures for $\mathrm{N}_{2} \mathrm{H}_{4}, \mathrm{~N}_{2} \mathrm{H}_{2}$ and N_{2} and determine the hybridization around nitrogen in each case.
