AP Chemistry – K_{eq} and LeChâtelier's Principle – 44

Name _

Per

6)

1. Methanol, CH₃OH, can be made by the reaction: $CO_{(g)} + 2H_{2(g)} \leftrightarrow CH_3OH_{(g)}$. (a) Use thermochemical data to calculate ΔH° for this reaction.

(b) In order to maximize the equilibrium yield of methanol, would you use a high or low temperature? Explain.

(c) In order to maximize the equilibrium yield of methanol, would you use a high or low pressure? Explain.

2. At $25^{\circ C}$ the reaction $\text{CaCrO}_{4(s)} \leftrightarrow \text{Ca}^{2+}_{(aq)} + \text{CrO}_{4}^{2-}_{(aq)}$ has an equilibrium constant $K_{eq} = 7.1 \times 10^{-4}$. What are the equilibrium concentrations of Ca^{2+} and CrO_{4}^{2-} in a saturated solution of CaCrO_{4} ?

3. How is a reaction quotient used to determine whether a system is at equilibrium?

4. If $Q > K_{eq}$, how must the reaction proceed to reach equilibrium?

5. At the start of a certain reaction, only reactants are present. What is the value of Q at this point?

6. Consider the following reaction: $CaSO_{4(s)} \leftrightarrow Ca^{2+}_{(aq)} + SO_4^{2-}_{(aq)}$. At $25^{\circ C}$ the equilibrium constant is $K_{eq} = 2.4 \times 10^{-5}$ for this reaction.

(a) If excess CaSO₄ is mixed with water at $25^{\circ C}$ to produce a saturated solution of CaSO₄, what are the equilibrium concentrations of Ca²⁺ and SO₄²⁻?

(b) If the resulting solution has a volume of 3.0 L, what is the minimum mass of $CaSO_{4(s)}$ needed to achieve equilibrium?

7. A mixture of CH_4 and H_2O is passed over a nickel catalyst at 1000. K. The emerging gas is collected in a 5.00 L flask and is found to contain 8.62 g of CO, 2.60 g of H_2 , 43.0 g of CH_4 , and 48.4 g of H_2O . Assuming that equilibrium has been reached, calculate K_{eq} for the reaction.

8. The following electron configurations represent excited states. Identify the element and write its condensed ground state electron configuration. (a) $1s^22s^23p^24p^1$

(b) $[Ar]3d^{10}4s^{1}4p^{4}5s^{1}$

(c) $[Kr]4d^65s^25p^1$

9. Determine the empirical formulas of the compounds with the following compositions by mass: (a) 24.5% Na, 14.9% Si and 60.6%F

(b) 62.1% C, 5.21% H, 12.1%N and 20.7% O

10. Calculate the molarity of a solution made by dissolving 0.125 moles of Na_2SO_4 in enough water to form exactly 750. mL of solution.

11. How many moles of KMnO₄ are present in 125 mL of a 0.0850 M solution?

12. How many milliliters of 11.6 M HCl solution are needed to obtain 0.255 moles of HCl?

13. Write Lewis structures for N_2H_4 , N_2H_2 and N_2 and determine the hybridization around nitrogen in each case.