AP Chemistry - Calculating $\mathrm{K}_{\mathrm{eq}}-42$

Name \qquad Per \qquad

1. Phosphorus trichloride gas and chlorine gas react to form phosphorus pentachloride gas:
$\mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \leftrightarrow \mathrm{PCl}_{5(\mathrm{~g})}$. A gas vessel is charged with a mixture of $\mathrm{PCl}_{3(\mathrm{~g})}$ and $\mathrm{Cl}_{2(\mathrm{~g})}$, which is allowed to equilibrate at 450 K . At equilibrium the partial pressures of the three gases are $\mathrm{P}_{\mathrm{PCl} 3}=0.124 \mathrm{~atm}, \mathrm{P}_{\mathrm{C} 12}=$ 0.157 atm , and $\mathrm{P}_{\mathrm{PC} 15}=1.30 \mathrm{~atm}$. (a) What is the value of K_{eq} at this temperature? (b) Does the equilibrium favor reactants or products?
2. Methanol, $\mathrm{CH}_{3} \mathrm{OH}$, is produced commercially by the catalyzed reaction of carbon monoxide and hydrogen: $\mathrm{CO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \leftrightarrow \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})}$. An equilibrium mixture in a 2.00 L vessel is found to contain 0.0406 moles $\mathrm{CH}_{3} \mathrm{OH}, 0.170$ moles CO , and 0.302 moles H_{2} at 500 K . Calculate K_{eq} at this temperature.
3. A mixture of 1.374 g of H_{2} and 70.31 g of Br_{2} is heated in a 2.00 L vessel at 700 . K . These substances react as follows: $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Br}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{HBr}_{(\mathrm{g})}$. At equilibrium the vessel is found to contain 0.566 g of H_{2}. (a) Calculate the equilibrium partial pressures of $\mathrm{H}_{2}, \mathrm{Br}_{2}$, and HBr .
4. Calculate the value of K_{eq} for the reaction in problem 3.
5. A flask is filled with 1.500 atm of $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$ and $1.000 \mathrm{~atm} \mathrm{NO}_{2(\mathrm{~g})}$ at $25^{\circ \mathrm{C}}$. After equilibrium is reached, the partial pressure of NO_{2} is 0.512 atm . (a) Write the equilibrium reaction.
(b) What is the equilibrium partial pressure of $\mathrm{N}_{2} \mathrm{O}_{4}$?
(c) Calculate the value of K_{eq} for the reaction.
6. At 900 K the following reaction has $\mathrm{K}_{\mathrm{eq}}=0.345: 2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}$. In an equilibrium mixture the partial pressures of SO_{2} and O_{2} are 0.165 atm and 0.755 atm , respectively. What is the equilibrium partial pressure of SO_{3} in the mixture?
