$AP\ Chemistry-Calculating\ K_{eq}-42$

Name	Per
$PCl_{3(g)} + Cl_{2(g)} \leftrightarrow PCl_{5(g)}$. A gas vess equilibrate at 450 K. At equilibrium	alorine gas react to form phosphorus pentachloride gas: sel is charged with a mixture of $PCl_{3(g)}$ and $Cl_{2(g)}$, which is allowed to the partial pressures of the three gases are $P_{PCl3} = 0.124$ atm, $P_{Cl2} = What$ is the value of K_{eq} at this temperature? (b) Does the equilibrium
hydrogen: $CO_{(g)} + 2H_{2(g)} \leftrightarrow CH_3Ol$	ommercially by the catalyzed reaction of carbon monoxide and $H_{(g)}$. An equilibrium mixture in a 2.00 L vessel is found to contain CO, and 0.302 moles H_2 at 500 K. Calculate K_{eq} at this temperature.
	$0.31~{\rm g}$ of Br ₂ is heated in a 2.00 L vessel at 700. K. These substances (Br _(g) . At equilibrium the vessel is found to contain 0.566 g of H ₂ . pressures of H ₂ , Br ₂ , and HBr.

4. Calculate the value of K_{eq} for the reaction in problem 3.	
5. A flask is filled with 1.500 atm of $N_2O_{4(g)}$ and 1.000 atm $NO_{2(g)}$ at $25^{\circ C}$. After equilibrium is reached, the partial pressure of NO_2 is 0.512 atm. (a) Write the equilibrium reaction.	
(b) What is the equilibrium partial pressure of N_2O_4 ?	
(c) Calculate the value of K_{eq} for the reaction.	
6. At 900 K the following reaction has $K_{eq} = 0.345$: $2SO_{2(g)} + O_{2(g)} \leftrightarrow 2SO_{3(g)}$. In an equilibrium mixture the partial pressures of SO_2 and O_2 are 0.165 atm and 0.755 atm, respectively. What is the equilibrium partial pressure of SO_3 in the mixture?	