AP Chemistry - Equilibrium and $\mathrm{K}_{\mathrm{eq}}-41$

Name \qquad Per \qquad

1. Explain what is incorrect about the following statements:
(a) At equilibrium no more reactants are transformed into products.
(b) At equilibrium the rate constant for the forward reaction equals that of the reverse reaction.
(c) At equilibrium there are equal amounts of reactants and products.
2. Consider the reaction $\mathrm{A}+\mathrm{B} \leftrightarrow \mathrm{C}+\mathrm{D}$. Assume that both the forward and reverse reactions are elementary processes and that the value of the equilibrium constant is very large. (a) Which species predominate at equilibrium, reactants or products?
(b) Which reaction has the larger rate constant, the forward or the reverse? Explain.
3. Write the expressions for K_{eq} for the following reactions. In each case indicate whether the reaction is homogeneous or heterogeneous.
(a) $\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{NO}_{(\mathrm{g})}$
(b) $\mathrm{Ti}_{(\mathrm{s})}+2 \mathrm{Cl}_{2(\mathrm{~g})} \leftrightarrow \mathrm{TiCl}_{4(\mathrm{l})}$
(c) $2 \mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \leftrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$
(d) $\mathrm{Co}_{(\mathrm{s})}+2 \mathrm{H}^{+}{ }_{(\text {aq) }} \leftrightarrow \mathrm{Co}^{2+}{ }_{(\text {aq })}+\mathrm{H}_{2(\mathrm{~g})}$
(e) $\mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \mathrm{NH}_{4}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-}$
4. Which of the following reactions lies to the right, favoring the formation of products, and which lies to the left, favoring the formation of reactants?
(a) $2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$

$$
\mathrm{K}_{\mathrm{eq}}=5.0 \times 10^{12}
$$

(b) $2 \mathrm{HBr}_{(\mathrm{g})} \leftrightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{Br}_{2(\mathrm{~g})}$

$$
\mathrm{K}_{\mathrm{eq}}=5.8 \times 10^{-18}
$$

5. The equilibrium constant for the reaction $2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{Br}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{NOBr}_{(\mathrm{g})}$ is $\mathrm{K}_{\mathrm{eq}}=1.3 \times 10^{-2}$ at 1000 K .
(a) Calculate K_{eq} for the reaction written in reverse.
(b) At this temperature does the equilibrium favor the reactants or the product?
6. Consider the following equilibrium, for which $\mathrm{K}_{\mathrm{eq}}=0.0752$ at $480^{\circ \mathrm{C}}$:
$2 \mathrm{Cl}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \leftrightarrow 4 \mathrm{HCl}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})}$
(a) What is the value of K_{eq} for the reaction written in reverse?
(b) What is the value of K_{eq} for the reaction $\mathrm{Cl}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \leftrightarrow 2 \mathrm{HCl}_{(\mathrm{g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})}$.
(c) What is the value of K_{eq} for the reaction in question (b) written in reverse?
7. Consider the reactions $\mathrm{A}_{(\mathrm{aq})}+\mathrm{B}_{(\mathrm{aq})} \leftrightarrow \mathrm{C}_{(\mathrm{aq})}\left(\mathrm{K}_{\mathrm{eq}}=1.9 \times 10^{-4}\right)$ and $\mathrm{C}_{(\mathrm{aq})}+\mathrm{D}_{(\mathrm{aq})} \leftrightarrow \mathrm{E}_{(\mathrm{aq})}+\mathrm{A}_{(\mathrm{aq})}$ for which the $\mathrm{K}_{\mathrm{eq}}=8.5 \times 10^{2}$. What is the value of K_{eq} for the reaction $\mathrm{B}_{(\mathrm{aq})}+\mathrm{D}_{(\mathrm{aq})} \leftrightarrow \mathrm{E}_{(\mathrm{aq})}$?
8. Consider the equilibrium $\mathrm{Na}_{2} \mathrm{O}_{(\mathrm{s})}+\mathrm{SO}_{2(\mathrm{~g})} \leftrightarrow \mathrm{Na}_{2} \mathrm{SO}_{3(\mathrm{~s})}$
(a) Write an expression for K_{eq} that includes all the reactants and products.
(b) Explain why we normally exclude pure solids and liquids from equilibrium-constant expressions.
(c) Write an expression for K_{eq} that excludes the pure solids from the equilibrium expression.
9. Using the activity series, write balanced chemical equations for the following reactions. If no reaction occurs, simply write NR. (a) Iron metal is added to a solution of copper(II) nitrate.
(b) Zinc metal is added to a solution of magnesium sulfate.
(c) Hydrobromic acid is added to tin metal.
(d) Hydrogen gas is bubbled through an aqueous solution of nickel(II) chloride.
(e) aluminum metal is added to a solution of cobalt(II) sulfate.
10. Determine the empirical formula of each of the following compounds if a sample contains:
(a) 0.104 moles of $\mathrm{K}, 0.052$ moles of C and 0.156 moles of O
(b) 5.28 g of Sn and 3.37 g of F
(c) $87.5 \% \mathrm{~N}$ and $12.5 \% \mathrm{H}$ by mass
11. If 1.5 moles of each of the following compounds, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{3} \mathrm{H}_{8}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$ is completely combusted in oxygen, which one will produce the largest number of moles of $\mathrm{H}_{2} \mathrm{O}$? Which will produce the least? Explain.
