AP Chemistry - Molarity and Titration - 35

Name \qquad Per \qquad

1. How many mL of a stock solution of $12.0 \mathrm{M} \mathrm{HNO}_{3}$ would you have to use to prepare 0.500 L of 0.500 $\mathrm{M} \mathrm{HNO}_{3}$?
2. If you dilute 25.0 mL of the stock solution to a final volume of 0.500 L , what will be the concentration of the diluted solution?
3. Glycerol, $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$ is a water-soluble liquid with a density of $1.2656 \mathrm{~g} / \mathrm{mL}$ at $15^{\circ} \mathrm{C}$. Calculate the molarity of a solution of glycerol made by dissolving 50.000 mL glycerol at $15^{\circ \mathrm{C}}$ in enough water to make 250.00 mL of solution.
4. What mass of NaOH is needed to precipitate all the Fe^{2+} ions from 25.0 mL of $0.500 \mathrm{M} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$ solution?
5. The distinctive odor of vinegar is due to acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$. (a) Write the balanced chemical equation for the reaction of acetic acid with sodium hydroxide. (b) If 2.50 mL of vinegar needs 35.5 mL of 0.102 M NaOH to reach the equivalence point in a titration, what is the mass of acetic acid in a 1.00 L sample of this vinegar?
6. In an experiment 7.52 g of $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ is dissolved in enough water to form 0.750 L . A 0.100 L sample is withdrawn from this stock solution and titrated with a 0.0425 M solution of $\mathrm{Na}_{2} \mathrm{CrO}_{4}$. What volume of $\mathrm{Na}_{2} \mathrm{CrO}_{4}$ solution is needed to precipitate all the $\mathrm{Sr}^{2+}{ }_{(\text {aq })}$ as SrCrO_{4} ?
7. A solution is made by mixing 12.0 g of NaOH and 75.0 mL of $0.200 \mathrm{M} \mathrm{HNO}_{3}$. (a) Write a balanced equation for the reaction that occurs. (b) Calculate the concentration of each ion remaining in solution. (c) Is the resultant solution acidic or basic?
